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SEPARATING THE RAPID AND SLOW MOTIONS IN THE PROBLEMS OF THE DYNAMICS OF 
SYSTEMS OF RIGID BODIES AND GYROSCOPES* 

S.V. BOGATYREV and V.A. SOBOLBV 

A method for all asymptotic separation of rapid and slow motions based 
on the concepts of the Bogolyubov-Mitropol'skii theory of integral 
manifolds, is proposed for use in analysing systems of differential 
equations with small parameters for the derivatives which arise in the 
course of solving dynamic problems. The motion of a gyroscope with 
contactless suspension in a magnetic field is studied. The method of 
separating the motions enables the problem to be reduced to that of 
investigating a regular, finite-dimensional system of ordinary differen- 
tial equations. 

1. Formulation of the problem. We consider system whose equations of motion can be 
written in the form 

2' = f (t. I, Y, e), ey’ = 67 (t, z, Y, e) (1.1) 

where t and y are vector variables, e is a small positive parameter, and f and g are smooth 
vector functions. 

Putting e=O in (l.l), we obtain a so-called generating system 

2' = f (t, r, y, O), 8 = g (L 2, Y* 0) 

Let us assume that the second equation of this system has an isolated solution y = h,,.(t,z). 
The sufficient conditions for the existence of an integral manifold (IM) Y =h (t, r, e), h (t, r, 
0) = h,(t,t) the motion along which takes place according to the equation 

i = f (1, z, h (t, z, e), e) (1.2) 
were given in /l-3/. Analysing this equation we can easily solve the problems of stability 
and of periodic solutions , as well as other problems concerned with the analytical study of 
the initial system. 

The function h can be obtained in the form of an asymptotic expansion 

h (t. x, s) = ho (t, t) + eh, (t, z) + e’h, (1, z) +. . . 

from the equation 

The solution of system (1.1) originating near the IM can be written as a sum of some 
solution lying in the IM, and a small, rapidly decaying supplement. Moreover, the problems 
of stability are equivalent for Bqs.(l.l) and (1.2). If, in particular, f (L 0, 0, e) - 0, 8 (t, 
0, 0, e) = 0, then A(t, O,e)= 0 and the zero solution of Eq.(l.l) is stable (asymptotically 
stable, unstable, or stable with respect to some of the variables) if and only if the-zero 
solution of (1.2) has the same property. This means that the principle of reduction which 
makes it possible to reduce the investigation of the initial system of equations to that of 
Bqs.(1.2), holds for the IH y=h(t,.z, 8). 

Such a principle was usedininvestigating the stability of the orientation of artificial 
satellites with dual rotation /2/, of gyroscopic systems /3/ and of systems of bodies with 
non-stationary internal masses /4/. 

2. The scheme of separating the motions. The method of separating the rapid and 
slow motions based on the ideas of the theory of IM , consists of introducing new variables u 
and v by means of the formulas 

z = B + ma 0, m,n, 6) 

y - v + h (1, 2, e) - v + h (t, u -k aH (t, 4 v, e), 4 
(2.1) 

so as to obtain the equations 

I(’ = P (t, u, e), ev’ - G (f, u, V, t) 
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the first of which is independent. The function h describes the IM Y = h (k 2, s), and the 
function H describes an IM of some auxiliary extended system /5, 6/. The first equation ot 
(2.2) describes the slow motions of the system in question, and the second the rapid motions. 
The function F is given by the equation 

F P. ", 4 = f (t, 4 h (t, ", 4, 4 (2.3) 

1f the matrix A (t,z) = @(1,&h, (t. t),O)/dg has an inverse, then the function h can be 
calculated in the form of an expansion in powers of the small parameter from Eq.(1.3), with 
any degree of accuracy, using algebraic operations. 

Let 
Y (k.r, r,e) = g (t, 5, 2 + h, e) - e $-e$f(t,r,z+h,e) 

(h - h (t, 2, e)) 

Then the function H = H (t, u, ", 3 can be found in the form of an asymptotic expansion 
from the equation 

dH 
eT+e dU =F(t, u,e) + $- Y (t, a + eH, v, e) -: 

f (6 u + eH, u + h V, u + eH, e), e) - f (t, u, h (6 u, e), e) 

(2.4) 

and the function C in (2.2) is given by the equation 

G (1, a, ", e) = Y (t, u + eH (t, u, v, e), v, e) (2.5) 

It should be noted that the following inequalities hold for the functions H and G: 

II H (t, aI ", s) II < C II "II . II G @, u, v, e) II < C II VII 

If the roots of characteristic equation det (A - 1E) = 0 satisfy the inequality 

ReLj(t,s)< -2a<O (2.6) 

then we have the following inequality for the variable " : 

II v (t, z)II < K exp (-e-la (t - t,)), K > 0, t > to (2.7) 

From relations (2.1), estimate (2.7) and the inequality for H and G, it follows that the 
solutions of system (1.1) can be written in the form 

2 = u f ecp,, I = h (t, u, e) + 92 

R-H (t, U. v, e), qz I:V + h (t, u + elf (t, II, v, e), e) - h (1, he) 

II 91 II < c II Y (to) - h (to, 2 (to), e) II em (-8% (t - t3) 
c > 0, t 3 t, (i = 1, 2) 

Relations (2.1) show that the solutions of system (1.1) represent a non-linear super- 
position of the slow variable u and the rapid variable ". The relations enable us to split 
not only the equations, but also the initial conditions, If the initial conditions z(to)= rO, 

# (kl) = 610 are given for Eqs.(l.l), then from the second equationof (2.1) it follows that 

" (to) = "0 - ga - h (to, x0, e), and u (to) = uo where u, is found from the equation 

z0 = a0 f eH (to, uO, vO, e) 

We note that condition (2.6) does not hold for the equations of motion of mechanical 
systems with low dissipation, and in particular for the gyroscopic systems /3, 6, ?/. Never- 
theless the method of IM can be used to separate the rapid and slow motions in the caseofsuch 
systems also. 

3. Rapid and slow motions of gyroscopic systems. The equations of motion of a 
wide class of gyroscopic system can be written in the following form /7/: 

dxldt = y, ed (Ay)ldt = - IG + eRl y + sR + eQ, (3.1) 
R - I/, Ia (Ay)/Mry 

Here Z is an n-dimensional vector of generalized coordinates, A is a symmetric, positive 
definite matrix, G is a skew symmetric matrix of gyroscopic forces, B is a symmetric matrix of 
the dissipative forces, Q ie thevectorofgeneralizecIforces, e isaranallpositiveparameter,and 
A, B, G, G-l, 0 are functions of t and 2, and we assume that they are bounded and havesufficient 
numbers of partial derivatives in t and z. 

System (3.1) has an IM y = ch (t, x, e), and the motion along it is described by the equation 

&Jdt - ti 0, 2, e) (3.2) 
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The initial variables 2 and y are connected with the new slow variable u and rapid 
variable v by the relations 

z = u + eH (t, u, v, e) 

Y - v + eh 0, 2, e) = v + eh (t, u + eH (t, IL, v, e), I) 

(3.3) 

Equations analogous to (1.3) and (2.4) yield the following approximate expressions: 

h (t, z, e) = k (t, z) + e4 (t, z) + ep . . . 

H (L u, u, e) = H, (t, u, v) + eH2 (t, u, v) + er . . . 
h, = G-IQ, b = -G-’ [Bh, + 8 (A&)/at] 

H, = - C’A u, Hz = - I(XWi%)A - C’BI G’Av + 

0 (II VII ‘) 

The matrices A,B,G and the function Q depend, in the expressions for h,h,, on t 
and z and in the expressions for H,,Ht, on t and IJ. 

The expressions for the variables u and u have the form 

duldt = sh (t, u, e), ed (Av)ldt = - (G + eB) u + eR (t, IL, v) + 
e*R, (t, u, u, e) 

(3.4) 

A = A (t, u + eH), B = B (t,’ u + eH), G = G (t, u + ef?) 

h = h (t, u + eH, e), H = H (t, u, v, e) 

I?, (t, u, v, e) = P (t, u + eH 0, u, v, e), v, e) 

The first equation of (3.4) describes the slow precession oscillations ofthegyroscopic 
system, and the second describes the rapid nutation oscillations. The first formula of (3.3) 
shows that the vector of generalized coordinates 2 represents the superpositionofthe pre- 
cession and nutation oscillations. 

Thus, using the substitution (3.3)) we have succeeded in separating the systemofEqs.C3.1) 
into two Eqs.(3.4), obtaining at the same time approximate expressions for the functions II 
and H. 

If in particular the initial conditions Z(t,)- Z,,y(t,) = $uo are given for Eqs.(3.1), 
then v (to,= eu, - e (u, -h (tO,z,,e)) and initial condition I.8 (k.) = uo for the first equation 
of (3.4) is found from the equation 

so = rag + eH (IO, Us, w,, e) 

in the form of the asymptotic expansion 

u. = z. -I- e*G-’ (to, ko) A (to, so) lrro - G-l (to, zo) Q (to, %,)I + es. . . 

It is important to note that the problem discussed aboye are closely connected with the 
problem of the admissibility of using the equations of the precession theory /3, 6-lo/. The 
following equations are precessional for the first equation of (3.4): 

IG (t, 12) + eB (ts #)I dxldt - eQ (L, z) (3.5) 

or, in equivalent form, 

dx/dt = e IG (t, z) + eB (t, z)l-l Q (t, 2) 

It can be confirmed that the right-hand side of this equation is identical withthe right- 
hand side of Eq.(3.2), apart from terms of the order of 0 (8) inclusive for the non-autonomous 
system, and up to.terms of order O(e9 inclusive for the autonomous system. 

Taking into account the fact that under the assumptions made above for system (3.1) the 
nutational oscillations decay and the reduction principle holds, we can conclude that the 
"truncated" Eqs.(3.2) or (3.5) can be used instead of the initial Eqs.(3.1). 

4. SOme generalizations. The IM method can be used successfully to investigate the 
problemsofcontrol theory /5, ll/, systems with several small parameters /12/, systems with 
random parameters /13/, and a wide range of other problems in mechanics. The application of 
this method to systems with distributed parameters is of particular interest. We need only 
show that a certain boundary value problem for the partial differential equations can be 

formulated as an operator equation in a suitable Hilbert space. Such a procedure can often 
be successfully carried out for many problems encountered in practice. In particular, we 
shall do this below for certain problems of dynamics of a conducting rigid body in a magnetic 
field. 

We consider the systems of equations of the form 
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x’ = f (t, 5, Y, E), EY' + Ay = g (t, x, Y, E) (4.1) 

where A is an unbounded operator in some Hilbert space Y. Under certain conditions which 

ensure the stability of the operator A, system (4.1) has an IM y = h (t, 2, e) which is ex- 

ponentially stable and satisfies the reduction principle. We note that the conditions of 

stability of the operator A consist of the fact that,the spectrum of this operator lies in 

some sector situated in the right half-plane of C, and the resolvent has, outside this sector 

as lhl-+oo, an asymptotic estimate of the form O(Ihl-I). 
It can be shownthatthe method of separating the motions admits of a generalization to 

systems of the form (4.1), i.e. there exists a change of variables 

2 = u + H (t, u, v, E), y = v + h (t, z, E) (4.2) 

which reduces system (4.1) to a system of the form 

U' = F (t, U, e), eu' + Au = G (t, u, v, e) (4.3) 

in which the rapid and slow motions are already separated. The functions h, H in (4.2) and 

F,G in (4.3) are found using a method analogous to that given in Sect.2. Practical dif- 

ficulties arise in determining the asymptotic expansion of the function If, and hence in con- 

structing the function G, but it can be done in certain important special cases. 

Let us consider the following special case of system (4.1): 

z' = fo (t, r) + fr (t, X)Y, 8~' + AY = sg (t, 2) (4.4) 

and specify for this system the following boundary conditions: 

r (to) = x01 Y (to) = YO (4.5) 

Using the algorithms given in Sect.2 for constructing the asymptotic expansions of the 

functions h(t,s,~) and H(t,u,u,~), we can obtain the following asymptotic representation: 

H (t, U, V, E) = - &fl (t, U) (A-%) + 8’ . . . (4.6) 

h (t, 2, 8) = EA-‘g (t, 2) - &“A-2 [ %L$$ + q f. (t, z)] + 8’. . . 

Then the change of variable (4.2) reduces problem (4.41, (4.5) to the form 

u’ =f, (t, u) + e IfI (t, u) A-’ g (6 41 - 

e4 
[ 
fl(t,u)Aea ~+~fo(t,u))]+e~... . 

( 

EV’ + Au = - eaA-’ 
i 
q$ fl (t, 24) v] + e.3 . . . 

u (to) = uot u (to) = CJ 

(4.7) 

(4.8) 

where we have the following asymptotic representations for uot vo: 

% = 20 + & (to, G,) A-‘Y, + ~~ . . . (4.9) 

uo = Yo - e-4% (to, x0) + Ea . . . 

5. On the motion of a conducting rigid body about the centre of mass in a 
magnetic field. We shall consider the problem of the rotation of a conducting rigid body 

about the centre ofmass, in a uniform magnetic field. We assume that the body is a uniform, 
isotropic ideal magnetic material of conductivity h and magnetic permeability p, and the 

characteristic time of diffusion of the vorticity of the field within the body is substan- 
tially less than the characteristic time of variation in an external magnetic field in a 

coordinate system attached to the body. 

The problem is solved by simultaneous investigation of the equations of motion of the 
rigid body about the centre of mass, and the equations of electrodynamics written in the 
quasistationary approximation 

lo'+ 0 x lo-N, I?= --or (5.1) 

$B’+GrotrotB=O, divB=O (rEV) (5.2) 

rot B(o) = 0, div B@) = 0 (r E V,) 

B, = B:‘) Is, pB, = B:) Is; B(b) I.,, = I’B= 

Here I is the inertia tensor of the body, o is the angular velocity vector within the 

body, r is the matrix of transition from the inertial absolute coordinate systemtoasystem 
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rigidly attached to the body, B- is the external magnetic field vector in the absolute co- 
ordinate system, a is a matrix placed in correspondence with the vector o so that the 
relation Pr = 0 X r, will hold for all_ rCzIP , .B and B(O) are the magnetic field vectors in 
the body V and outside the body V,,B, 18 and ‘B, 1s are the tangential and normal components 
of the vector 
in a magnetic 
formula 

B at the surace S of the‘body. The moment N of the forces acting on the body 
field is expressed.in terms of the Maxwell stress tensor T according to the 

N = 
5 

[r x Tn] ds, 2’ = [T,,= & (Bj”Bp’ - + I( B(O) Ila &)} 

(i, j = 1, 2, 3) 

We take as the unit of time the characteristic time of variation in an external magnetic 
field in the associated coordinate system, and the characteristic dimension of the body as the 
unit of space variables. Then, under the assumptionsmadeabove, the parameter e = .klca in 
Eqs.(5.2) will be small. 

Earlier /14-17/ a similar formulation was used to study the problem of the motion of a 
conductor in a magnetic field. 

To transform problem (5.1), (5.2) to the form (4.4), we carry-out the following change 
of variables: 

B = b + (E + Y)rBm, B(“) = b(O) + (E + ‘Z’(o)) I’B” 

which leads to a null condition at infinity and preserves the homogeneity of the conditions 
on S. Here E is the unit matrix and the matrices v and '4(O) admit of the representation 

Y = II vlp,, V&, V& 11, Y(O) = (1 vlp, vqp, VQ n 

where the functions $f,$")j(j = 1, 2, 3) are solutions of the problem 

A+, = 0 (r E V), A$i”) = :O (r E V,) (i = 1, 2, 3) 

ql,=qpIs, r$pgj,=(i-_p)(e,),ls; Ip,lm=O 

where e,(j = 1, 2,s) are unit vectors of the associated coordinate system. Using the new 
variables we can rewrite to system (5.2) in the form 

eb’++ot~otb= - e(E + Y) (rB’- -prB- x. 0) 

div b = 0 (r E V); rot b(O) = p, div b(o) = 0 (r z V,) 

b, = by’ Is, pb,=bf)js, b(@I,=O 

(5.3) 

Then we shall have the following expression for the moment of the forces: 

N = [JrB” x rf3”] f (w 

J=~~lydr 

ibdr$&s[r x rotbldr) x rBm 

Here and henceforth the integration will be carried out over the volume V of the body. 
Mow problem (5.1), (5.3) can be rewritten in the form of system (4.4), provided that the 

operator A and the functions fa, fl, g are defined in a suitable manner. 
Indeed, let us introduce the notation 0' = (0, 2" = r,, XL- 0, y - b and denote by s.- (a', 2") 

thevectorcomposed, successively, oftheelementsof the vector+' and the elements of the column 

vectors of the matrix 2”. Let 

fo (t. z) = (fo’ (t. 2). lo’ (t, .)) = (1-1 (Id x t’ + 32°F x iBoD), - X’i) 
fi (6 5) if = (h’ (G 4 Y* fl’ (G 4 u) = 

(‘-~[(~~“dr+~~[~X~Yldr)XiB-l.O) 

II (6 4 - -(E + I)(+“B’m + 2°F x 0’) 

'We define the operator 4 :Y-- Y by the equation A#=(,$)-rrotmty, and assume that the space Y 

consists of the vectors y, square summable over v and satisfying the condition of solenoidality 

div y = 0 W) 

The domain of definition of the operator A consists of the vectors y belonging to the 
Sobolev space a(v), satisfying the condition of solenoidality (5.4) andpossessingacontinuation 
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ny E II' with the properties 

div 111 = 0, rot Hy = 0 (r E V,) 

Yr = (W,Is. P'Yn = (Hu)n la 

The generalized derivatives are used here in defining the operators di;, rot . It WdS 
shown in /18/ that the operator A defined in this manner will satisfy the required conditions 

of stability. 

It is now clear that after such a reformulation, problem (5.11, (5.3) can be rewritten in 
the form of system (4.6). 

Eq.(4.7) for the slow motions u = (o,r) will have the form 

z0’ + 0 x ZO = JrB- x rB- + eP, IrB.- + rB= x 01 x 
FB” + e’Pz [rB..” + 2rB.m X 0 -t (rB” X 0) X 0 + 
rB" ,x z-1 (lo X 0 + A-B” x rB”)l x rB” + . . . 

r* =-5-s 

(5.5) 

Here J is the tensor characterizing the magnetizability of the body in an external 

magnetic field, and PI, Pz,... are the magnetic polarizability tensors of the body /15/. 

All these tensors are determined only by the form of the body and its electrical and magnetic 

characteristics. Their determination reduces to solving certain classical stationary boundary 

value problems. 

The properties of the IM of slow motions imply that for every solution (0 WV r Q), b Q)) 
of system (5.11, (5.3) a solution (0. (t), r+ (t)) of system (5.5) can be found such, that the 

following inequality will hold for all t>to: 

II 0 0) - 0* :t) II + II r Q) - r+ 0) II G K exp (4h (t - to)) (5.6) 
If the solution (0 @)a I' (0, b 0)) is determined by the initial conditions, then the 

initial conditions for the solution (~e(t),r*(t)) of system (5.5) satisfying inequality (5.6) 

can be found from the relations (4.9) in a unique manner. 

The expression on the right-hand side of the first equation of (5.5) represents an 

asymptotic expansion of the slow part of the moment of the forces N in powers of the small 

parameter a. In the special case of h = 1, p = 1 the expansion will be identical with the 

expansion of the moment of the forces obtained in /15/. 

In fact, the system of Eqs.(S.S) describes the motion of the body about the centre of 

mass under the action of the moment of forces generated by the eddy currents and magnetization 

of the body in the external magnetic field outside some initial time interval. 

It is important to note that by separating the rapid and slow motions, we have succeeded 

in reducing the problem described by a system of partial differential equations with singular 

perturbations, to the study of a regular, finite-dimensional system of ordinary differential 

equations. 

The main results of this paper were presented at the Sixth All-Union SessiononTheoretical 

and Applied Mechanics /19/. 
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STABILITY DIAGRAMS OF THE PERIODIC NOTIONS OF A PENDULUM WITH AN 
OSCILLATING AXIS* 

Z.S. BATALOVA and G.V. BELYAKOVA 

Periodic rotations of a pendulum with a harmonically oscillating axis of 
suspension are studied analytically and numerically. General regularities 
in their bifurcation diagrams are established, depending on the evenness 
of the numbers characterizing the number of rotations of the pendulum and 
the period of oscillations of the axis of suspension. 

The phenomenon of the dynamic stability of the upper position of the 
pendulum and the effect of vibrational excitation and of the maintenance 
of its rotations have found wide application in modern devices and 
mechanisms /l-3/. Themathematicalmodelsofthemotionsofaparametrically 
excited pendulum in the form of non-linear, non-autonomous differential 
equations, taking resistance forces into account, were studied by 
analytical methods and a number of periodic modes were investigated 
numerically (see /2/ where a survey of the investigations and a biblio- 
graphy are given, and also /4-6/l. In the Hamiltonian case the periodic 
motions of a rotational body have not been studied before. 

The present paper deals with periodic rotations of a parametrically 
excited non-linear oscillator, without taking the dissipation into account. 
The Cesari method is used to obtain the generating solutions, a number of 
periodic rotations of a single type are established and their stability 
is studied in the case when the values of two parameters are small. A 
number of solutions of practical interest are continued numerically into 
the domain of large values of the parameters. The bifurcation diagrams 

l Prikl.Uatem.Mekhan.,52,1,55-63,1988 


